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DESIGN AND SELECTION CRITERIA FOR
THE HYDRAULIC CRANE BUFFER

Douglas P. Taylor, President
Taylor Devices, Inc.

North Tonawanda, New York

In a modern steel plant, maximum productivity requires maximum equipment capacity and high operational
speeds. In the case of the steel mill overhead traveling crane, higher capacity and higher speed has greatly
increased the potential for collision damage.

The hydraulic crane buffer has proven itself to be the most reliable and least costly method of protecting
crane, operator, and plant from the hazards of crane collisions, even under 100% full speed impact
conditions.

This paper examines the hydraulic buffer from a design and operational viewpoint as compared to other
types of crane bumpers.  Quantitative data includes all formulas and calculations necessary to select a crane
buffer, along with qualitative guidelines for specific types of applications.

INTRODUCTION

Almost all electric traveling cranes built in this country utilize some sort of bumper for the purpose of
eliminating or minimizing damage.  Protection of this type is required for three major types of collisions:

1. Crane to crane impacts

2. Crane to building impacts

3. Trolley to bridge end stop impacts

The type of bumper system used will determine the degree of collision protection available, which may
range from minimal protection up to zero damage protection under full load, full speed collisions with power
on.

It is the choice of the end user of the crane as to what level of protection is desired in a crane bumper, and
this choice is determined by the following:

1. The duty cycle of the crane

2. The accident history (if any) of the cranes in a given area

3. Operator habits in a given area
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4. Requirements and recommendations of associations and regulatory bodies such as the AISE and
OSHA

In order to have an understanding of the crane bumper, one must first define what it is. A good working
definition is as follows:

“A crane bumper (or buffer) is a device installed for the purpose of storing or absorbing the energy of a
moving crane, thereby protecting the crane, the building it may operate in, and personnel in the immediate
area from damage caused by collision.”

The words bumper and buffer are used synonymously in the above definition, simply because most present
safety standards use both words in this manner.  The word bumper is usually used to describe a device
which stores the energy of impact (like a spring) and gives this energy back to the system. A buffer is
generally considered to be a device which absorbs the energy of impact and permanently removes this
energy from the colliding objects.  For the balance of this paper, the word bumper and buffer will be used
in this manner.  Therefore, the use of coil springs or similar means as a collision protection system on a
crane will be defined as a spring bumper, whereas the use of a hydraulic device for the same purpose will
be defined as a hydraulic buffer.

For comparative discussion purposes, a single typical crane will be used for studying various types of crane
buffers and bumpers.  The following is the standard crane:

1. Bridge weight = 100,000 lb. (does not include trolley)

2. Bridge speed = 300 F.P.M.

3. Trolley weight = 20,000 lb.

4. Trolley speed = 200 F.P.M.

5. Maximum carried load = 20 tons, carried on cables

6. Bridge span = 80 ft.

7. Minimum vertical distance from the center of gravity of the lifted load to the trolley hoist
mechanism = 8 ft.

For comparison purposes, we will evaluate an impact of this crane into the end of the building it operates
in at 50% speed.
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COMPARATIVE PERFORMANCE CURVES FOR CRANE PROTECTION SYSTEMS

In order to design a crane bumper (buffer) to meet the requirements of the various regulatory bodies, one
must be concerned with 2 basic criteria:

a. The energy capacity of the bumper (buffer)

b. The deceleration rate permitted on the crane

Energy capacity basically defines how large a bumper (buffer) is, and the deceleration rate is a
measurement of how quickly the crane is to be stopped at impact.

The energy a moving object possesses at any time is a function of its weight and speed.  The formula which
is used for determining energy is:

E = ½ MV2

Where: E = Energy
M = Mass of the moving body

V = Velocity of the moving body 

By converting mass to units of weight, we can rewrite this formula in an easily understood way:

E = .1865 W V2

Where: E = Energy, units of in-lb.
W = Weight, units of lbs.
V = Velocity, units of ft/sec.

For the sample crane, we can calculate its energy (not including lifted load) using this formula:

W = 100,000 lb. bridge + 20,000 trolley = 120,000 lb.
V = 300 F.P.M. bridge speed = 5 ft/sec. @ 100% speed
V = 2½ ft/sec. @ 50% speed

Therefore, for the sample crane at 50% speed:

E = .1865 (120,000) (2.52)
= .1865 (120,000) (6.25)
= 139,875 in-lb.

Note that because the energy varies with the square of the impact speed that the energy of a crane at 100%
speed is four times that of 50% speed.
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The deceleration rate imparted to a moving object is a measure of the relative magnitude of the force being
used to decelerate it.  For example, if a 100 lb. weight was decelerated by a 1,000 lb. force, the
deceleration rate would be much higher than if the same 1,000 lb. stopping force was applied against a
weight of 5,000 lb. A simple way of expressing deceleration is in units of “G,” one G being the amount of
acceleration imparted to an object by the gravitational attraction of the earth.  Since the gravitational
attraction on a body on earth is equal to its weight, an acceleration or deceleration rate is determined by:

Acceleration or deceleration in G's = F
W

Where F =  the applied force (lb.)
W = the object’s weight (lb.)

Hence, if we applied a 1,000 lb. stopping force to a 100 lb. weight, the deceleration would be: 

Deceleration =  = 10 G1000
100

A second way of expressing deceleration is in units of ft/sec2.  To convert units of G's to units of ft/sec2,
multiply the value in G's by 32. ft/sec2, the acceleration of gravity on earth.   Hence:

10 G deceleration = 320 ft/sec2

 .2 G deceleration = 6.4 ft/sec2

The codes which often are used to determine the size of a crane buffer (bumper) specify protection at
various percentages of the crane’s full load speed, with a corresponding deceleration rate.  The two major
codes used to specify a bumper or buffer are those of OSHA and AISE 1969.  At the time of writing this
paper, certain types of cranes must have bumpers or buffers complying with OSHA requirements, by law.
The AISE 1969 code for bumpers and buffers is a recommended specification but nevertheless many crane
users require that a crane be in compliance with AISE 1969 regulations. The reader must realize that neither
of the codes referenced cover all types of crane impacts, and for special severe service usage, capacities
as high as 300% that of the AISE code may be required to yield satisfactory performance.  Appendix I lists
the basic energy and deceleration requirements of both OSHA and AISE 1969 standards.

Figure 1 plots allowable peak deceleration rate vs. speed for both OSHA and AISE 1969.  Since OSHA
specifies average decelerations, these values have been plotted assuming that the allowable peak is twice
the average value.  For higher velocity impacts under both specifications, the deceleration is assumed to
increase in direct proportion to the energy of the crane (increases with the square of the crane velocity).
Figure 1 reveals that the OSHA regulations allow higher deceleration rates than AISE 1969, meaning that
a crane complying with AISE 1969 will have a “softer” stop than that permitted by OSHA.  However, one
must be quite careful not to get “carried away” with specifying the softest stopping bumper for the sole
purpose of providing operator comfort.  For example, typical deceleration rates for various occurrences
are:

1. Normal city driving in an automobile =  .2 G (6.4 ft/sec2)
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2. Maximum emergency braking in an automobile = .8 G (25.6 ft/sec2)

3. 5 mph crashes in 1973 and later cars = 4 G (128 ft/sec2)

4. A “knock-out punch” = 6 G (192 ft/sec2)

5. The minimum deceleration rate necessary to cause bone fracture in an average person = 35 G
(1120. ft/sec2) (damage to knee-thigh-hip complex with load applied at knees, ref. S.A.E.
information report J885A).

6. The deceleration rate necessary to cause death in an average person = 80 G (2560 ft/sec2).

Remembering that since collisions involving cranes at more than 50% full load speeds are considered as
an emergency or accident occurrence, the regulatory restrictions on crane deceleration appear quite
conservative.  When compared to the normal “fender bender” car accident at 4 G deceleration, the AISE
1969 100% speed impact deceleration of 2 G appears to be quite a soft stop by comparison.

One would normally expect that the deceleration rate of a buffer (bumper) is primarily a function of its
stroke and this is indeed true among similar products of a given manufacturer.  Figure 2 shows force-
displacement output curves of 3 different types of bumper systems with equal strokes.  The 3 output curves
have been superimposed over one another for comparison.  The energy absorbed or stored by each
bumper is equal to the area under the appropriate curve.

Curve 1 is that which normally occurs with a rubber bumper.  Note the parabolic shape of the output
curve, and how the load out is only slightly lower than the load in.  This means that this type of bumper will
impart a significant rebound velocity to the crane equal to approximately 80% of the original impact speed.
Note also that to match the area under the curves of the other bumpers a very high output force is required,
yielding a high deceleration rate.

Curve 2 is that which occurs with a coil spring bumper.  The spring force increases in proportion to the
stroke with this type of design.  The load out is equal to the load in, yielding a 100% rebound rate. To
obtain equal capacity, the coil spring requires less force than the rubber spring, meaning that it will
decelerate the crane at a lower rate than the rubber spring.

Curve 3 is the output curve of a well-designed hydraulic buffer.  Note the near-constant force output
yielding the lowest deceleration, and hence the softest stop, of any of the curves shown.  In addition, the
output force of the hydraulic buffer drops to near zero after impact, yielding no bounce back of the crane.

The quantities of relative output force and rebound rate are technically defined as the bumper efficiency and
coefficient of restitution, respectively.  Efficiency is a measure of relative output force.  A unit with 100%
efficiency has a perfectly “square” output curve with constant force over the entire stroke of the unit.  A
square output curve is shown in Figure 2 with a dashed line.
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Efficiency  =  Square wave output force 
Actual output force

x 100%

Where square wave output force  =  
Energy input (in lb)

Stroke (in)
−

Therefore, using Figure 2 values,

Square wave output force = Y

Efficiency, curve 1 = 
Y

3Y
 x 100% 33%=

Efficiency, curve 2 = Y

2Y
 x 100% 50%=

Efficiency, curve 3 = Y
1.1Y

 x 100% 90%=

The coefficient of restitution is defined as the ratio of rebound velocity to impact velocity.  Therefore, if a
spring bumper is impacted at 150 FPM, and the crane bounces back at 100 FPM, the coefficient of

restitution is 
100

150
.66=

In general, coil and rubber spring bumpers have a coefficient of restitution of between .75 and 1.0, whereas
hydraulic buffers have a coefficient of less than .1, yielding a non-rebound impact when compared to
springs.

VARIOUS  TYPES OF CRANE BUMPERS

Steel Stops - The oldest form of crane bumper is the plain steel stop.  When impacted, the steel stop will
hopefully buckle and bend, thereby dissipating the energy of the crane.  Steel stops are a rather “rigid” way
of stopping a crane, since most steel structure deflects only slightly under an applied force.

In general, a plain steel stop neither acts like a bumper or a buffer, since it is usually so rigid that when it
is impacted, the crane energy must be dissipated by crushing the crane, the building it runs in, or both. The
output curve efficiency of a steel stop bumper is 10-15%; coefficient of restitution is .8-1.0 for most
designs.
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Wheel Chocks - The wheel chock is a variation of the steel stop in which the energy of the crane is
dissipated by lifting the crane up and off of the crane rails as the crane wheels run up onto the tapered
chock.  Wheel chocks are quite satisfactory for very low velocity “bumping” and can theoretically be
designed to work at greater speeds.

The operation of a wheel chock is quite simple and analogous to that of a spring bumper. As the crane
impacts the wheel chock at speed, the crane wheels will “ride up” the slope of the chock and will tend to
lift the crane off the rail.  This effectively converts the kinetic energy of the crane to potential energy, which
is entirely given back to the crane as a rebound.  Therefore, a crane running into a wheel chock will be
rebounded off the chock at nearly the same speed it impacted at.  This, of course, pre-supposes that the
crane is not going fast enough to over-run the wheel chock. The output curve efficiency of a wheel chock
is 15-30%; coefficient of restitution is 1.0.

Wood Stops - Another variation of the rigid steel stop is simply to install a piece of suitable timber between
the crane and the object it is going to impact.  Many of these bumpers offer the feature of easily replaceable
wood blocks, usually by inserting the timber into a cast iron socket.  Although one could attempt to classify
an impact into a piece of wood as “softer” than that obtained by running into a solid steel stop, the
difference is marginal.  As with steel, only a small amount of the crane’s energy can be stored by the wood
before crane, building, or operator damage occurs.  The output curve efficiency of a wooden stop is 10-
30%; coefficient of restitution averages .40-.70.

Spring Bumper Systems -

a. Steel Spring Bumpers - Steel springs were the earliest type of bumper resilient enough to be able
to control the energy of a moving crane without damage.  This type of bumper is still used on
many new cranes today, but if the crane is over 5 tons capacity, it is very difficult to meet OSHA
or AISE requirements without excessive costs.

Various types of steel springs have been used in crane bumpers including coil springs, Belleville
springs, Volute springs, and ring springs.  With the exception of the coil spring, most spring
bumper designs require that the spring element be properly and frequently lubricated to prevent
jamming.  Because a spring bumper stores energy, a jammed bumper of this type can be an
exceedingly dangerous safety hazard.

Coil spring bumpers are relatively free from jamming if properly designed, and are indeed the
most popular of this bumper style. The most common coil spring used is identical to that used in
the truck suspension of railroad rolling stock.  On our sample crane with its kinetic energy at
50% speed of 139,875 in-lb., a bumper using railroad type coil spring packs can readily be
designed.  A typical railroad spring pack has an energy capacity of 10,000 in-lb.  This means that
to protect both sides of the reference crane bridge to 50% speed requires 32 of these spring
packs, 8 on each corner of the crane.  Compared to the hydraulic buffer, designing a coil spring
bumper that actually meets the mandatory code requirements (OSHA) yields a cumbersome,
heavy and expensive package. Since the coil spring only stores the crane’s energy, the crane will
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rebound off the bumper at a speed equal to its initial impact speed.  Output curve efficiency for
steel springs is 45-60%; coefficient of restitution is .90-1.0.

b. Rubber Spring Bumpers - The rubber spring offers performance equal to the coil spring with the
advantage of being easier to package.  A second advantage is that the rubber spring does
dissipate a small amount of the crane impact energy as heat, due to friction within the rubber
particles under stretching and compression.  This means that the rebound from a rubber spring
is not quite as violent as that occurring from a coil spring, assuming that either bumper is designed
to decelerate the crane equally.  Typically, a rubber spring which is impacted at 100% speed will
rebound the crane at about 85-90% speed.  Overall package size is similar to that of the coil
spring bumper, being heavy and cumbersome compared to a hydraulic buffer of equal capacity.
Output curve efficiency for rubber springs is 30-40%; coefficient of restitution is .70-1.0.

c. Compressed Elastomer Spring Bumpers - This spring bumper contains a silicone rubber
elastomer in a high strength steel pressure vessel and utilizes seals and a piston to compress the
rubber to explosive-like pressures (up to 60,000 lbs. per square inch).  The rubber material used
is of the silicone family and is not completely cross-linked in its molecular structure, so that it will
flow in a fashion somewhat like a fluid.  Since normal rubber spring bumper material will
permanently deform at stress levels of only 5,000 psi or so, the ability of the compressible
elastomer bumper to compress the rubber to ultra-high pressures of 60,000 psi yields a very
compact design.  This type of bumper offers somewhat lower rebound speeds than other types
of rubber springs because the rubber can be forced around the piston of the device at impact,
thereby absorbing some of the impact energy.  Rebound velocity is in the order of 80% of the
initial impact speed.  Compressed elastomer bumpers have seen only limited usage on overhead
cranes due to the requirement that the rubber must be pre-loaded with a high static pressure for
the bumper to operate properly.  This static pressure can be drastically increased as the rubber
expands due to the normal high temperatures often found in steel mills, causing a possible safety
hazard.  If a rubber spring bumper is to be used on a crane, the non-compressible rubber pad
type should be considered for safety and cost reasons, since in addition to safety problems, the
compressed elastomer bumper is the most expensive bumper (buffer) design built.  Output curve
efficiency for the compressed elastomer bumper is 30-40%; coefficient of restitution is .75-90.

THE MODERN HYDRAULIC BUFFER

The present style of hydraulic buffer became available about 1955, with widespread usage on cranes and
other steel mill equipment starting in 1965.  Prior to 1965, most hydraulic buffers were of a “dashpot” type
design, using only a single fixed orifice to absorb energy.  Because the efficiency of a fixed orifice is only
about 30%, very long strokes with complex multi-spring or latch-type reset were required with these early
designs.  Unlike the early hydraulic dashpots, a modern hydraulic buffer contains:

1. A reset system, self-contained and internal to the buffer – 
An internal coil spring is normally used.
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2. A variable metering orifice – 
The self-contained reset is used to eliminate troublesome external reset latches and pins used on
early dashpot designs.  Reset forces are usually kept down to about 1% of maximum output
force.  Therefore, a hydraulic buffer with 50,000 lb. rated output force would have a maximum
reset force of 500 lb.  This means that unlike any type of bumper system, most hydraulic buffers
can be easily compressed by the crane at low velocity, effectively using the buffer stroke as
additional crane approach.  Since the reset forces are so low, the buffer will not bounce the crane
back after impact.

Unfortunately, this advantage of the hydraulic buffer can also be a serious disadvantage if the crane is in the
hands of a relatively unskilled operator, or the duty cycle of the crane demands that the load be made to
swing by impacting the buffer with power on.

It is the purpose of the variable orifice metering system of the buffer to regulate the ability of the buffer to
absorb the crane energy efficiently at all speeds and conditions of impact.  To properly understand the
features of the various types of metering systems available, they must be discussed at length.

TYPES OF HYDRAULIC METERING SYSTEMS

Three major types of metering systems have been used in hydraulic buffers for steel mill service. These are:

a. Single orifice metering

b. Variable orifice by mechanical metering

c. Variable orifice by fluidic metering

The previous discussion of the early hydraulic dashpot type of buffer covered the primary disadvantage of
single orifice metering, namely that of excessive stroke required due to its inherently low output curve
efficiency.  Since hydraulic buffers of this design have not been produced for the past 15 years, no further
discussion will be given on this design.

The primary design criteria for a bumper (buffer) is to absorb the impact energy of the crane with a
deceleration limited by various codes.  As has been shown, a design with a high output curve efficiency is
capable of doing this with a much shorter stroke (and usually a lower cost) than a long stroke design of low
efficiency.  With a hydraulic buffer, the metering of the fluid is governed by the various equations of the
science of fluid mechanics.  In the case of flow through an orifice, these equations state that the pressure
drop across the orifice varies with the square of the speed of the fluid flowing through the orifice.  This
means that to obtain an efficient constant force output during an impact, the orifice must be drastically
varied during the impact.  For maximum efficiency, the orifice area must be greatest at the instant of impact,
progressively dropping to zero at the end of stroke.  The two methods used to accomplish this in the
modern hydraulic buffers are by either a mechanical or fluidic type of metering system.
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MECHANICAL METERING SYSTEMS

The mechanical metering systems use a metering tube or metering pin to mechanically vary the orifice area
of the buffer throughout its stroke. Figure 3 shows a typical buffer with metering tube construction.  A list
of the internal parts of Figure 3:

1. Cylinder

2. Piston rod

3. Piston head and high pressure seal

4. Orifice hole (one of 5)

5. End cap and seal assembly (low pressure)

6. Metering tube

7. Metering tube high pressure seal

8. Piston rod displacement accumulator

9. Return spring

At impact, fluid will be forced through all of the orifice passages, yielding a fixed orifice area until the piston
head passes the first orifice hole.  As the impact continues, the remaining holes are passed and the process
continues in like manner until the shock absorber stops the impacting weight.  Piston rod displacement is
compensated for by an accumulator, often of cellular rubber construction.

The metering tube buffer can be designed to yield a high output efficiency if a large number of orifice hole
positions are used.  The more orifice holes, the more uniform and efficient the output curve will be.  The
number of holes actually used relative to buffer stroke varies drastically between the various manufacturers.
In 2 inch stroke units for example, some manufacturers use as few as 2 orifice positions, while others use
as many as 6.  To obtain maximum output efficiency, the spacing of the holes is important, since the shock
must stroke past each successive orifice hole at equal intervals of time.  Because of this, the holes must be
parabolically spaced along the metering tube, with the holes widely spaced at the beginning of the buffer
stroke and closely spaced at the end.  If a linear hole placement (equal spacing between holes) is used to
save costs, a loss in efficiency will result.  A similar problem occurs if too few holes are used.

Depending on hole location and number of hole positions used, the efficiency of metering tube crane buffers
available today ranges from 40% to 80%.  Efficiencies at the low end of the range result from the attempted
use of low quality industrial equipment shock absorbers (sometimes called industrial decelerators) in steel
mill service.  It is important to remember that when a crane impact occurs, both man and machine must be
protected.  The industrial shock absorber (or decelerator) is an inexpensive item designed to protect the
machine only, so a low output efficiency can be tolerated.
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A second style of mechanical metering uses a metering pin rather than a tube, but is a more complex design,
so costly as not to be offered in any form other than an “industrial decelerator” with very low efficiency.

FLUIDIC METERING SYSTEMS*

Fluidic metering uses a specially shaped series of orifice passages to yield by hydraulic flow the effect of
a mechanically varied orifice.  In order to operate efficiently, a compressible working fluid must be used,
such as the family of silicone base oils.  The molecular structure of these oils is such that they can physically
be compressed by a substantial amount when forced through the orifices of the buffer.  A typical fluidic type
buffer is shown in Figure 4.  A description of the internal parts of Figure 4:

1. Cylinder
2. Piston rod
3. Piston head
4. Main orifice
5. Feeder orifice
6. Fluidic collector groove
7. End cap and seal assembly (low pressure)
8. Piston rod displacement accumulator
9. Return spring

10. Reset valve
11. Guide spool

When impacted, a buffer of the fluidic type will initially attempt to behave like a single orifice design, flowing
all fluid across the main orifice passage.  Within a few micro-seconds after impact the pressure differential
across the length of the main orifice has a gradient, such that the pressure in front of the piston is greater
than that existing in the fluid collector groove.  This means that flow through the feeder orifices will be
entrained into the main orifice flow, yielding a combined flow equal to the main orifice plus the feeder
orifice. Because the working fluid is compressible, the flows can indeed be combined, yielding a large
effective orifice area at impact.  By proper design, the flow through the feeder orifices will be progressively
decreased as the buffer absorbs energy, yielding the effect of a parabolically reduced orifice area, with a
square output curve.  Response is similar to that of a metering tube or metering pin metering system,
although no mechanical variation of the orifice occurs.

The fluidic metering system consistently yields the highest efficiency of any known fluid metering system.
Output efficiency will normally range between 85% and 95%, with a coefficient of restitution of less than
.10 as typical.
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PACKAGING OF HYDRAULIC BUFFERS

Using the buffer designs shown in Figures 3 and 4, a striker cap could be added to the piston of the buffer
and it would be ready for crane service.  However, the exposed highly-finished piston rod would be
exposed to the mill environment, which is not desirable for maximum life. For this reason, hydraulic buffers
in mill service often utilize bellows over the piston rod for environmental protection . A second alternative
is to turn the buffer backwards, and install it in a guide sleeve.  This design, shown in Figure 5, not only
protects the rod, but also is much better able to resist offset loadings than exposed rod designs.

For our sample crane, a typical hydraulic buffer suitable to absorb the crane energy at 50% speed is a
Taylor Device’s Fluidic Buffer, Model 3 x 3, rated at 81,000 in-lb full capacity.  This buffer is 3" diameter,
and has a 3" stroke, and is 13½ O.A.L.  One of these buffers would be required at each corner of the
crane.  For protection at 100% speed, a Taylor Device’s Fluid Buffer Model 5 x 4 could be used, rated
at 306,000 in-lb.

PERFORMANCE CHARACTERISTICS OF HYDRAULIC BUFFERS
UNDER POWER-ON IMPACTS

As mentioned previously, hydraulic buffers utilize reset springs with relatively low force to enable use of the
buffer stroke as crane end approach.  In addition, the hydraulic buffer differs from a spring- type buffer with
regard to how it operates under low velocity impacts.  A spring type bumper varies its output force in
proportion to how far it strokes.  If an energy input is introduced which is over the capacity of the bumper,
it will bottom the bumper, leaving the crane and/or building structure to absorb the remaining energy.  A
hydraulic buffer will vary its output force with respect to the square of the impact velocity, thereby always
maintaining a constant stroke at any speed, since the impact energy of the crane also varies directly with
the square of the velocity.

This means that for any two bumper systems, with equal decelerations at a given speed, the hydraulic buffer
will offer the softest stop at all lower velocities.

As mentioned previously, this feature of the hydraulic buffer is also its biggest drawback, if one considers
that cranes are subject to more than just power-off, no load impacts.

If a hydraulic buffer is sized for power-off impacts only, it will use nearly all of its stroke to absorb the
kinetic energy of the crane at all speeds, leaving no capacity remaining for counterbalancing drive forces,
or counterbalancing the equivalent driving force of a swinging load.  If the hydraulic buffer is oversized for
power-on impacts, it will not stroke completely under power-off conditions, but will have additional
capacity to withstand power-on conditions.  The lack of inclusion of driving inputs in sizing of a buffer is
the major cause of premature buffer failure on cranes.  It is apparent that within the steel industry, a typical
duty cycle for a hydraulic buffer often includes repeated 10-20% speed impacts with power-on, for the
purpose of putting the crane bridge or trolley in the end approach condition.  If a crane bridge or trolley
is expected to undergo this sort of duty, then the hydraulic buffers should be sized for power-on impact
conditions.
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Taylor Device’s experience with both metering tube and fluidic buffers has shown that more than 50% of
the cranes equipped with hydraulic buffers are subjected to this sort of duty cycle.  This has prompted the
firm to offer two distinctly different types of orificing in the fluidic type buffers:

1. Full drive down metering:  Allows the fluidic design to behave exactly like a metering tube design,
being easily compressed under drive inputs.

2. Non-drive down metering:  A valve is installed across the fluidic orifices to enable the buffer to
offer substantial resistance (20% of maximum output force) for counterbalancing drive at low
speeds.

It is recommended that the use of the hydraulic buffers on the following types of mill cranes include sizing
for power-on impacts, or include the use of a Fluidic Buffer without full drive down metering:

1. Bridge and trolley buffers on soaking pit and stripper cranes

2. Trolley buffers on all charging and scrap handling cranes

3. Trolley buffers on all magnet cranes

4. Bridge and trolley buffers on all pendant and radio controlled cranes

5. All crane applications where the buffer is expected to be impacted more often than “emergency”
conditions

THE EFFECT OF SWINGING LOADS ON ENERGY CAPACITY

Mentioned briefly in the previous section was the “equivalent driving force of a swinging load.” Most codes
state that the lifted load is not to be considered as crane weight for calculating the energy to be absorbed
by a buffer, but an effective drive for a swinging load can indeed be calculated.  The response of the lifted
load will lag the response of the crane by a short period of time, but if the duty cycle of the crane involves
repeated inputs of this type, the buffer (bumper) should be sized to include swinging load effects.
Calculating the effective input of a swinging load is somewhat complicated, and Appendix II shows the
calculations involved.

THE SELECTION OF HYDRAULIC BUFFER BORE AND STROKE

Unlike other types of crane protection systems, hydraulic buffers are available in a seemingly endless list
of various bores and strokes.  For satisfactory crane service one should not consider buffers designed for
only industrial service, as they are not rugged enough for mill applications.  After eliminating industrial
designs, one finds that even among the mill service buffers there are still a large number of sizes available.
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The most common mistake made by purchasers of a hydraulic buffer is to compare designs from different
manufacturers by bore and stroke, as would be done with hydraulic cylinders. Unfortunately, with buffers,
this comparison does not apply since most manufacturers use varying operating stress levels, and various
construction materials.  Materials range from mild steel to heat- treated aircraft quality steels of types 4140,
4340, etc.  When comparing buffers from different manufacturers, the purchaser should be concerned with
the following:

1. Is the buffer certified by the manufacturer to the protection level desired?

2. Does the manufacturer’s catalog rated energy capacity for the buffer agree with that calculated
for the crane?

3. What back-up structure design loading is specified by the manufacturer for the particular buffer
involved?

Because of differences in efficiency among the various hydraulic buffers, it is possible for 2 buffers to have
equal back-up structure design loadings, but stroke differences of as much as 2:1.  Because of efficiency,
it is quite possible for the 10" stroke buffer of one manufacturer to have the same capacity and deceleration
rate as the 5" stroke buffer of another.

Even among the products of a single manufacturer, a large number of sizes may be available in a given
capacity. For example, in mill buffers of 250,000 in-lb. capacity, the following sizes are available from
Taylor Devices.

Model
Diameter

(in.)
Stroke

(in.)
Output Force

(lb.)
Capacity
(in-lb.)

3 x 8 3 8 35,000 252,000
4 x 6 4 6 50,000 270,000
5 x 4 5 4 85,000 306,000
6 x 2 6 2 150,000 270,000

Any of the above sizes are perfectly adequate from a capacity basis, but each size has its advantages and
disadvantages:

1. The 3 x 8 is the least expensive, the 6 x 2 is the most expensive.

2. The 3 x 8 has the lowest reaction force, the 6 x 2 puts out the highest force.

3. The 6 x 2 is the shortest, and hence takes less effort to package.

4. The 6 x 2 can withstand the most abuse, and is virtually impervious to scrubbing and sideload
damage.
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5. The 6 x 2 will give the longest cyclic life, since its short stroke yields the least number of square
inches of piston rod sealing area passing through its seals each cycle.

In general, for mill service, the following rules can be used to select bore and stroke ratios:

1. For trolley buffers, the ratio of the buffer stroke to piston rod diameter should not be greater than
1.5 to 1.

2. For bridge buffers, the ratio of the buffer stroke to piston rod diameter should not exceed 3 to
1.

3. The lower the stroke/diameter ratio, the more rugged the design is.  This means that of the four
sizes, the 3 x 8 would be acceptable for use on small cranes only, and the other sizes are suitable
for either bridge or trolley usage on any crane.  For a severe service application, the Model 6
x 2 would be the best choice, followed by the Model 5 x 4.

Most manufacturers rate their hydraulic buffers as able to accept repeated angular offsets of 8-10°.
However, if a long, slender buffer is put into mill service, its usual failure mode from offset impacts is due
to scrubbing loads rather than angular misalignment.  If the buffer is stroking and the crane should rise or
fall suddenly (as when a rail joint is encountered), the buffer will be subjected to a scrubbing load.
Assuming a steel on steel coefficient of friction of .25, this scrub is equivalent to an angular misalignment
of 15 degrees, substantially more than would ever be expected on a crane from angular misalignment.

For this reason, one should always try to keep the stroke of the buffer as short as the code (and the budget)
allows.

COST OF THE HYDRAULIC CRANE BUFFER

The cost of hydraulic buffers on a crane varies with the size of the crane, the code requirements, and the
duty cycle of the crane. In general, using 2001 prices, one can roughly expect the following prices to apply
for crane buffers of various capacities:

1. A 10,000 in-lb. buffer = $325. each

2. A 100,000 in-lb. buffer = $630. each

3. A 1,000,000 in-lb. buffer = $1,875. each

4. A 10,000,000 in-lb. buffer = $13,000. each

For our sample 20 ton crane, protected to 50% speed on the bridge and trolley, the total cost for 4 pc.
Model 3 x 3 bridge and 4 pc. Model 2 x 2 trolley buffers is roughly $5,200.
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When comparing equal capacity designs and equal decelerations, hydraulic buffers of more than 20,000
in-lb. capacity are usually the most economical design available compared with any type of spring bumper.

Maintenance on a properly designed mill buffer is limited to occasional visual inspection to make sure that
the buffer is resetting completely.  Rebuilding is required only if the buffer shows any obvious damage.
Cycle lives of between S0,000 and 2 million impacts can be expected between rebuilds, provided that the
buffer has not been overloaded.

SUMMARY

For those readers interested in formal sizing calculations for a crane buffer, Appendix III lists and explains
the formulas involved.  Unlike spring bumpers which often must be completely designed for each job, the
wide selection of hydraulic buffers available means that a size can be quickly established for a given
application.  Most manufacturers are able to size buffers over the telephone, with no quotation charges
involved.  Optional custom mounts are available for direct bolt-in retrofit of existing bumper or steel stop
designs, if standard mountings will not adapt easily.  For new cranes, most crane manufacturers offer
hydraulic buffers in compliance with AISE 1969 as an option.

In its relatively short history, the hydraulic buffer has proven to be of significant value to the steel industry,
offering protection never before available at reasonable cost.  On cranes subject to frequent bumping,
reduced maintenance costs can pay for the buffer in as little as three months of operation.  This means that
this product can offer significant reductions in maintenance, and increased productivity, at a reasonable
cost.

The author welcomes any comments or questions concerning hydraulic buffers either within or beyond the
scope of this paper. Literature available on the Taylor Device’s Crane Buffer product line includes:

1. Crane Buffer Sizing Graphs for OSHA Code
2. Crane Buffer Sizing Graphs for AISE 1969 Code
3. Crane Buffer Data Packet (General)
4. W-Series Self-Adjusting Crane Buffer Packet
5. O-B Series Long Stroke Buffers Information Packet

Requests for information should be sent to the following address:

Taylor Devices, Inc. 
90 Taylor Drive
N. Tonawanda, New York 14120-0748
Attn:  Crane Buffer Sales Dept.
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APPENDIX I
CRANE BUMPER STANDARDS

1. OSHA Impact Standards:

All information listed here is based on OSHA standards dated June 27, 1974.  These standards show
the following protection requirements:

a. Bridge bumpers (buffers)
Protection at 20% of maximum full load crane speed with an average deceleration rate of 3
ft/sec2.

b. Bridge bumpers (buffers)
Protection at 40% of maximum full load crane speed with no specified deceleration.

c. Trolley bumpers (buffers)
Protection at 33-1/3% of maximum full load crane speed with an average deceleration rate of
4.7 ft/sec2.

d. In addition OSHA states that for calculating bumper (buffer) capacity, swinging loads are not to
be considered as crane weight.  Trolley placement for impact is not specified, so one must
assume that the trolley is fully offset to one end of the bridge for correct sizing.

e. OSHA does not specify whether power is to be considered as on or off for sizing purposes. One
normally assumes power off.

2. AISE 1969 Impact Standards

All information listed here is based on AISE standard No. 6, dated May 1, 1969. These standards
show the following protection requirements:

a. Bridge and trolley bumpers (buffers)
Protection at 50% of maximum full load crane speed with a maximum deceleration rate of 16
ft/sec2.

b. Bridges and trolleys equipped with hydraulic buffers shall have protection at 100% maximum full
load crane speed with a deceleration rate increased correspondingly from that specified at 50%
speed.

c. In addition, the AISE specifies that trolleys are to be fully offset to the end approach position for
bridge and trolley bumper (buffer) sizing, and power is to be considered off for all sizing.
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APPENDIX II
THE EFFECT OF SWINGING LOADS

At whatever speed one is concerned with, a swinging crane load will possess a certain amount of kinetic
energy of its own, a function of its weight and the velocity of the crane.  At impact, the load will swing until
all of its kinetic energy has been converted to potential energy by lifting the load through the vertical
displacement of the swing.  Expressing this as a formula yields:

Potential energy = kinetic energy

Swinging weight x vertical swing height = .1865 W V2

Since the swinging weight and “W” in the kinetic energy formula are the same, the expression reduces to:

Vertical swing height (in.) = .1865 V2 (ft2/sec2)

As the load swings to its maximum angular displacement, a right triangle with hypotenuse equal to cable
length, and an adjacent side equal to the hypotenuse minus the vertical swing height will be formed.  This
means that the angle of swing can be determined by:

Cosine (swing angle) =  cable length vertical swing
cable length

−

The effective drive of the load is equal to the component of the lifted load acting in the horizontal direction,
which is:

Effective drive = swinging load x sin (swing angle) ÷ cos (swing angle)

On the trolley of our sample crane, the energy of the empty trolley at full speed is:

KE = .1865 W V2  = .1865 (20,000) = 41,444 in-lb.
200
60

2






The vertical swing height = .1865 V2 = 2.07 in.

(Note that the formula KE = .1865 WV2 has conversion units “built in” to the constant .1865, so the end
result of this calculation is values of “inches” using values of “ft/sec” for velocity).
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For our sample crane, the shortest net effective cable length of the lifted load is 8 ft. (96 in.) Therefore, if
we assume that at impact the cable length is 10 ft. (120 in.), allowing the load to swing:

Cos (swing angle) =  = .982120 2.07

120

−

swing angle = 10 degrees, 50 minutes

Therefore, the effective drive of the 20 ton swinging load is:

Effective drive = 40,000 (.188)/(.982) = 7,658 lb.

Effective drive energy = force x distance = 7658 lb. x 2 in. = 15,316 in-lb.

Using two Taylor Device’s Fluidic Buffers to absorb the trolley kinetic energy in each direction would
require 2 pc. Model 2 x 2 rated 27,000 in-lb. each, with a maximum output force of 15,000 lb.   Note that
the effect of the swinging load is an equivalent driving force of 7658 in-lb/buffer, equal to 28% of the buffer
capacity.

In general, studies have shown that lifted load can usually be compensated for on most cranes with typical
impacts by selecting a buffer with capacity at least 20% greater than that required for the dead weight of
the crane.
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APPENDIX III
A GUIDE TO HYDRAULIC CRANE BUFFER SIZING

A buffer is a device which converts mechanical energy into thermal energy.  The energy transformation
occurs as the shock absorber’s fluid medium is forced through orifices at high velocities.

Selecting a shock absorber is not difficult if you follow the formulae presented.  To insure adequate sizing,
all inputs to the buffer must be known or conservatively estimated.

A) UNITS AND ABBREVIATIONS: (Use only units shown below in formulae)

W = weight (lb.)

V = linear velocity at the shock absorber (ft/sec.)

F = output shock force at impact (lb.)

FD  = motor drive force (lb.)

S = shock absorber stroke (in.)

KE = kinetic energy (in-lb.)

B) SOLVING FOR KINETIC ENERGY

1) Horizontal motion
KE = .1865 WV2 (in-lbs.)

2) Vertical motion
KE = W (H + S) (in-lbs.)

C) SOLVING FOR KINETIC ENERGY OF OVERHEAD CRANES

1) Because of the “sling-shot” effect of cable hung loads and overspeed possibilities, effective
impact weights, WE should be used.

a) Bridge Buffer WE/Buffer = 1.3  (½ bridge weight + trolley weight) (lbs.)

OR

WE/Buffer = ½ bridge weight + ½ trolley weight + ½ lifted load  (lbs.)
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Use whichever weight is greater for kinetic energy calculation

b) Trolley Buffer WE/Buffer = 1.3 (½ trolley weight) (lbs.)

OR

WE/Buffer = ½ trolley weight + ½ lifted load  (lbs.)

Use whichever weight is greater for kinetic energy calculation

2) Solve for kinetic energy per buffer

KE/Buffer = .1865 WE V2 (in-lbs.)

D) SOLVING FOR DRIVE FORCE AT THE BUFFER

1) A.C. Motors

FD = 1375     (Assumes 2.5:1 stall factor)Motor Horsepower

V

2) D.C. Motors 

FD = 1925       (Assumes 3.5:1 stall factor)Motor Horsepower

V

Note:   Both 1 and 2 neglect gearing power losses and slippage power losses.

E) SELECTING THE BUFFER IF INPUT IS PURE KINETIC ENERGY WITH NO
MOTOR DRIVE

Select a shock absorber from catalog data with adequate energy capacity for your calculated input. For
cyclic rates above 120/hour, use a 30% safety factor on energy capacity.  For cyclic rates above 360/hour,
consult factory on your application

F) DECELERATION RATE FOR OVERHEAD CRANES

1) AISE 1969 code limits decelerations to ½ G at 50% speed, which effectively is 2.0 G at
100% speed for a Taylor Buffer.

2) OSHA code limits bridge decelerations to .0932 G average at 20% speed, which effectively
is .373 G average at 40% speed for a Taylor Buffer.
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3) OSHA code limits trolley decelerations to .146 G average at 33a% speed.

4) Deceleration rate for your application is:

Number of G’s =  F / Buffer
Impact weight / buffer

5) Bridge weight per buffer for deceleration calculation, use ½ bridge weight + ½ trolley weight.

For trolley weight per buffer when calculating deceleration, use ½ trolley weight.

6) If your deceleration is too high, try a longer stroke.

G) SELECTING THE SHOCK ABSORBER IF INPUT IN KINETIC ENERGY AND
MOTOR DRIVE

1) Obtain kinetic energy of your input, and the motor drive force.

2) Select a trial shock absorber diameter.

3) Solve for stroke required using the equation KE

S = 
KE

C(F F )D−

Where C, the efficiency coefficient, varies between .4 and .9 for various manufacturers.  As
in section E, use a 30% safety factor on kinetic energy for cyclic rates above 120/hour, and
consult the manufacturer for sizing of units with cyclic rates above 360/hour.

4) Calculate deceleration in the same way as section F.
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FIGURE 1
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FIGURE 2
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FIGURE 3
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FIGURE 4
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FIGURE 5


